The Sharp Lower Bound of the First Eigenvalue of the Sub-laplacian on a Quaternionic Contact Manifold

نویسندگان

  • S. IVANOV
  • A. PETKOV
  • D. VASSILEV
چکیده

The main technical result of the paper is a Bochner type formula for the sub-laplacian on a quaternionic contact manifold. With the help of this formula we establish a version of Lichnerowicz’ theorem giving a lower bound of the eigenvalues of the sub-Laplacian under a lower bound on the Sp(n)Sp(1) components of the qc-Ricci curvature. It is shown that in the case of a 3-Sasakian manifold the lower bound is reached iff the quaternionic contact manifold is a round 3-Sasakian sphere. Another goal of the paper is to establish a-priori estimates for square integrals of horizontal derivatives of smooth compactly supported functions. As an application, we prove a sharp inequality bounding the horizontal Hessian of a function by its sub-Laplacian on the quaternionic Heisenberg group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sharp Lower Bound of the First Eigenvalue of the Sub-laplacian on a Quaternionic Contact Manifold in Dimension 7

A version of Lichnerowicz’ theorem giving a lower bound of the eigenvalues of the sub-Laplacian under a lower bound on the Sp(1)Sp(1) component of the qc-Ricci curvature on a compact seven dimensional quaternionic contact manifold is established. It is shown that in the case of a seven dimensional compact 3-Sasakian manifold the lower bound is reached if and only if the quaternionic contact man...

متن کامل

The Obata Sphere Theorems on a Quaternionic Contact Manifold of Dimension Bigger than Seven

On a compact quaternionic contact (qc) manifold of dimension bigger than seven and satisfying a Lichnerowicz type lower bound estimate we show that if the first positive eigenvalue of the sub-Laplacian takes the smallest possible value then, up to a homothety of the qc structure, the manifold is qc equivalent to the standard 3-Sasakian sphere. The same conclusion is shown to hold on a non-compa...

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

A universal lower bound for the first eigenvalue of the Dirac operator on quaternionic Kähler manifolds

A universal lower bound for the first positive eigenvalue of the Dirac operator on a compact quaternionic Kähler manifold M of positive scalar curvature is calculated. It is shown that it is equal to the first positive eigenvalue on the quaternionic projective space. For this, the horizontal tangent bundle on the canonical SO(3)-bundle over M is equipped with a hyperkählerian structure and the ...

متن کامل

A Lower Bound of The First Eigenvalue of a Closed Manifold with Positive Ricci Curvature

We give an estimate on the lower bound of the first non-zero eigenvalue of the Laplacian for a closed Riemannian manifold with positive Ricci curvature in terms of the in-diameter and the lower bound of the Ricci curvature.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011